Removal of PFAS from drinking water by reverse osmosis membranes, residential filters, and a novel resin

Orlando Coronell¹, Frank Leibfarth², Detlef Knappe³, Heather Stapleton⁴

¹Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill

²Department of Chemistry, University of North Carolina at Chapel Hill

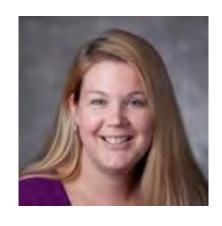
³Department of Civil, Construction and Environmental Engineering, North Carolina State University

⁴Nicholas School of the Environment, Duke University

Research Triangle Environmental Health Collaborative 12th Annual Environmental Health Summit PFAS: Integrating Science and Solutions in NC October 23-24, 2019 NC Biotech Center, RTP, NC

PFAST Team 3 Investigators

Orlando Coronell, PhD **Associate Professor** UNC, Chapel Hill


Mei Sun, PhD Assistant Professor UNC, Charlotte

Detlef Knappe, PhD Professor, North Carolina State University

Frank Leibfarth, PhD **Assistant Professor** UNC, Chapel Hill

Heather Stapleton, PhD **Associate Professor Duke University**

Membrane treatment

Ion exchange treatment Electrochemical treatment Activated carbon treatment

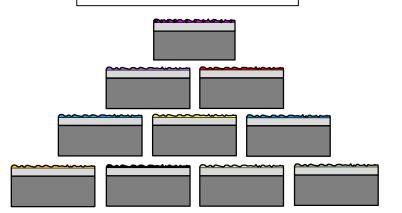
Novel resin treatment Home filter treatment

http://lanxess.co.za/

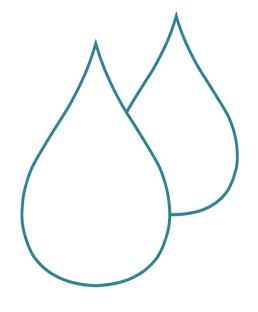
PFAS removal by membrane filtration

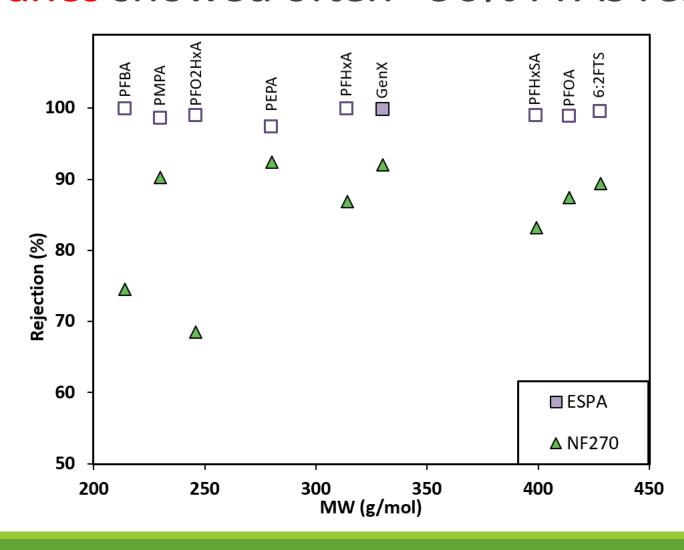
<u>Kasia Grzebyk</u>¹, Nick Chew¹, Zachary Hopkins², Rebecca Weed², Detlef Knappe², Orlando Coronell¹

¹Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill ²Department of Civil, Construction and Environmental Engineering, North Carolina State University


Motivation: The quantity and scope of studies evaluating PFAS rejection by high-pressure membranes is limited

Experimental design


Broad range of PFASs


Broad range of high-pressure membranes

Various water matrices

RO membranes consistently showed >90% PFAS removal NF membranes showed often <90% PFAS removal

Residential reverse osmosis membranes

- Residential membranes performed as well as reverse osmosis membranes marketed for community/municipal water treatment
- Residential membranes showed PFAS removals greater than 97% for most PFAS species (e.g., PFBA, PMPA, PFO2HxA, PEPA, PFHxA, GenX, PFHxSA, PFOA, 6:2FTS)
- Changing the pressure of the feed water did not substantially impact the level of PFAS rejection by residential membranes

Ionic fluorogel resins for PFAS removal from water

<u>Elango Kuramasamy</u>¹, Irene Manning¹, Orlando Coronell², Frank Leibfarth¹

Ionic Fluorogels made in our lab

Motivation: More effective resins (i.e., capacity and kinetics) are needed for the removal of PFAS from water

¹Department of Chemistry, University of North Carolina at Chapel Hill

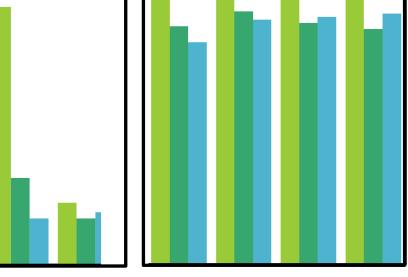
²Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill

Ionic Fluorogel (IF) resins for PFAS remediation

Existing commercial materials do not adequately remove emerging, short-chain PFAS from water. We identified two approaches to create a synergistic PFAS removal strategy.

Fluorophilicity

- Allows separation of fluorous-tagged compounds from complex media
- Has been shown to aid in PFOA sorption


$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$$

Ion Exchange

- State-of-the-art resin technology
- Relies on exchange of carboxylate group with a cationic resin (crosslinked polystyrene)
- Limited success for short-chain PFAS

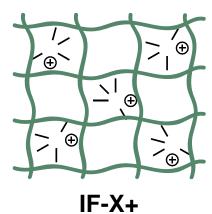
IF resins show a higher affinity for PFAS than commercial technologies

Batch Equilibrium Sorption PFOA ■ PFHxA GenX 100 % PFAS Removal after 21hours 60

IF-10+ IF-20+ IF-30+ IF-40+

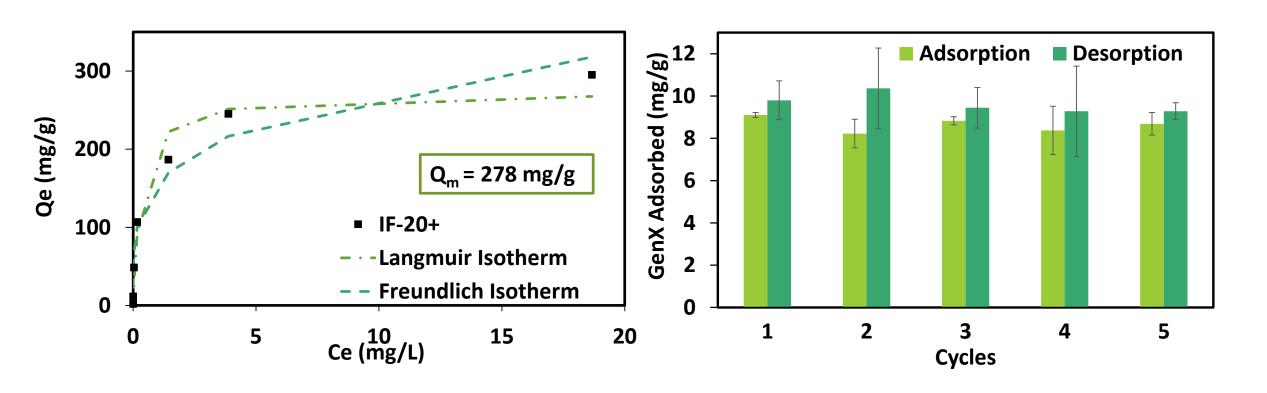
GAC: Filtrasorb 400. PAC: Picahydro MP23

GAC

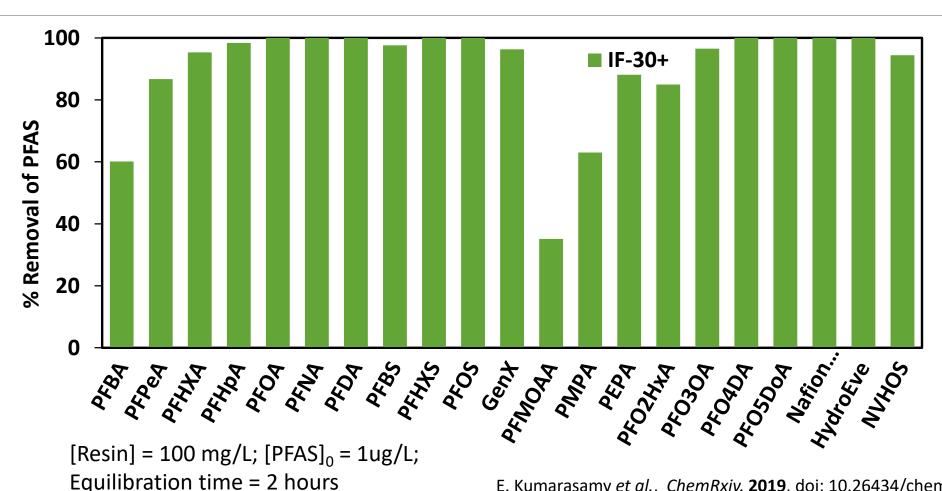

PAC

IX

40


20

IX: PFA 694E



[Resin] = 10 mg/L $[PFAS]_0 = 1 \mu g/L$ [NaCl] = 200 mg/L[Humic Acid] = 20 mg/L Equilibration time = 21 hours

IF resin has high GenX binding capacity and is amenable to regeneration

IF resin demonstrated high removal of 21 PFAS from settled surface water

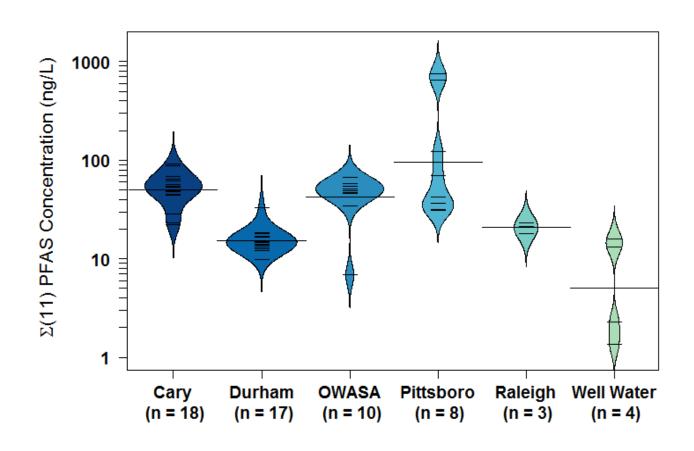
E. Kumarasamy et al., ChemRxiv. 2019, doi: 10.26434/chemrxiv.10046576.v1

PFAS removal by pointof-use residential water filters

Nicholas J. Herkert¹, Cara Peters¹, David Bollinger¹, Sharon Zhang¹, Detlef R. U. Knappe², Kate Hoffman¹, P. Lee Ferguson¹, Heather M. Stapleton¹

Motivation: The quantity and scope of studies evaluating PFAS rejection by POU residential water filters is limited

¹ Nicholas School of the Environment, Duke University


² Department of Civil, Construction and Environmental Engineering, North Carolina State University

Experimental design

- Participants: Interested homeowner residing in Chatham, Durham, Orange and Wake counties
- Samples Collected:
 - A 1L water sample from a faucet in the home with no in-line filtration
 - A 1 L water sample will be collected from the owner's source of filtered water
 - A written survey to collect information on home's water source and drinking water habits
- Samples Analysis: Analyzed for a suite of 11 perfluorinated chemicals (PFCs)

PFAS concentrations in sampled areas

Source water concentrations for different water utilities. On average the $\Sigma(11)$ PFAS across all water utilities was 62 ng L⁻¹ and ranged from 7 ng L⁻¹ to 729 ng L⁻¹.

PFAS removal via POU Filters

- All reverse osmosis and dual-stage filters had near complete PFAS removal.
- Activated Carbon based filters demonstrated much greater variability across our study.
 - Single stage under-sink filters (n=5) removed a majority of PFSAs (% removal > 84%) but only removed half of PFCAs.
 - Both refrigerator (R) and pitcher (P) filter showed increased removal efficiency for long-chain PFAAs (61% for P & 65% for R) compared to short-chain PFAAs (46% for P & 47% for R).
 - Whole house POE system were largely ineffective and 4 of 6 POE systems showed increase in concentration after filtration.

Pitcher Filter

Reverse osmosis

Herkert et al. under review

PFAS removal correlated well with chain length

- Long-chain PFAS compounds we removed more efficiently than short-chain PFAS compounds.
- Statistically significant (p-value < 0.05) positive correlation between average percent removal by AC filters and chain length for <u>PFCAs</u>
- Suggestive correlation between average percent removal by AC filters and chain length for <u>PFSAs</u>, though not statistically significant.

Refrigerator Filter

Pitcher Filter