

Potential Solutions for PFAS

NIEHS Superfund Research Program Remediation Research

Biomedical, Health Risks, Stakeholder Engagement, Transport, Detection and Remediation

Heather F Henry, PhD Program Officer, Superfund Research Program National Institute of Environmental Health Sciences National Institutes of Health

Research Triangle Environmental Health Collaborative Oct 23-24, 2019

National Institutes of Health • U.S. Department of Health and Human Services

National Institute of Environmental Health Sciences Your Environment. Your Health.

Superfund Research Program

Fundamental Knowledge

NIH Research Mission

National Institutes of Health

...of living systems

with

environmental exposures

...including health effects, assessing risks, <u>detection &</u> <u>remediation</u> National Institute of Environmental Health Sciences

Bethesda, MD

Superfund Research Program (SRP) SARA Legislation, 1986 ...caused by hazardous substances

Health

Outcomes

...reduced illness

& disability

...problem solving, stakeholder engagement

SRP's Remediation Mandate and PFAS

Development of biological, chemical, physical means to reduce the amount/toxicity of per- & polyfluorinated alkyl

- Conventional Remediation Strategies
 - Biodegradation
 - Chemical Oxidation/Reduction
 - Physical (Phase change / physical destruction)
- Optimize remediation technologies to:
 - Remove from water/soil: Adsorption, separation
 - Break the C F bond: **Destruction**

Ross, McDonough, Miles et al. 2018, Remediation

Current State of Innovation - Soils

Ross, McDonough, Miles et al. 2018, Remediation

Soil Stabilization

Excavation (dig/haul)

Biomedical, Health Risks, Stakeholder Engagement, Transport, Detection and Remediation

Technologies for Remediation:

Adsorption/Separation, Destruction

Status: Laboratory / DemonstrationMedia: Water / Groundwater / Soil / SedimentApplication: In situ / Ex situ / Point of Use (POU)

(Citation, for more information)

National Institutes of Health • U.S. Department of Health and Human Services

Remediation - Destruction

Stephen Boyd, Michigan State University, P42ES004911

- Basic research developing energy efficient nanoreactors for photoreduction
- Nanoreactor = Indole with smectite (clay) interlayers
- Reported complete defluorination of PFOA and PFOS using hydrated electrons at low energy irradiation
- Tested at concentrations >> environmental

The optimized molecular structures of indole acetic acid (IAA) and IAA radical cation as obtained from density functional theory calculations. (Tian et al., Sci Rep, 2016)

Remediation – Adsorption / Separation

Tim Phillips, Texas A&M University, P42ES027704

- Collaborating with Kung-Hui Chu to develop <u>reusable hydrogel</u> <u>sorbents</u> for removing PFAS from aqueous solution.
- Reported removal and recovery of 5 target long- and short-chain PFAS. (Huang et al., 2018)
- Compounds studied:
 - PFOA
 - PFOS
 - Perfluorobutanesulfonic acid (PFBS)
 - Perfluorobutanoic acid (PFBA)
 - GenX
- Regenerated using 70% methanol/ 1% NaCl

Sorbents: fluoridation and/or amination of poly(ethylene glycol) diacrylate (PEGDA) hydrogel

(Huang et al., ACS Omega, 2018)

Remediation – Adsorption, Concentration

Gokhan Barin, CycloPure, Inc., R44ES029401

- Tunable high-affinity cyclodextrin polymers adsorb PFAS, polymer structure concentrates PFAS
 - Polymers derived from corn, safe material
 - Binds thousands of organic molecules in their cup-shaped structures
 - Removal takes place within cyclodextrin cups sized to maximize attraction and capture of micropollutants
 - Point of use (personal filtration device)
 - DEXSORB-MP and DEXSORB-PFAS

0.78 nm

In situ

Remediation – Adsorption, Concentration

David Dumas, Amaratek, Inc., R43ES030678

Developing novel **polymer-diatom composite materials** that can be used as passive and easily **regenerated sponges**. Technology will bind a spectrum of PFAS under a range of environmental conditions

- Design tight PFAS binding ligands for PFAS with computer modeling
- Synthesize panel of prototype ligands
- Attach ligands to porous support (diatomaceous earth)
- Evaluate extraction efficiency under range of environmental conditions
- Apply in barrier wall, "teabag," booms/floats, well inserts
- Regenerate via supercritical CO₂

Remediation – Destruction

David Sedlak University of California, Berkeley, P42ES004705

- Combining treatment options to degrade and destroy AFFF and PFAS in groundwater
- In research testing heat-activated persulfate (H-AP) lab test mimicking field conditions:
 - Low pH results in formation of shorterchain perfluorocarboxylic acids (PFCAs)
 - Chloride must be converted into chlorate before PFOA removal occurs.
 - The presence of aquifer solids slows but does not prevent PFOA mineralization

(Bruton and Sedlak, Environ Sci Technol, 2017; Bruton and Sedlak, Chemosphere, 2018)

Graph depicting heat activated persulfate treatment of PFAS

Remediation – Adsorption, Separation, Destruction

Joseph Miller, Lynntech, Inc., R43ES030250

- **Continuous removal/disposal** system for the concurrent sorption and breakdown of contaminants into harmless precipitates
 - Lead and lag sorbent process coupled to pulsed plasma
 - Decomposes contaminants and regenerates the sorbents at the same time
 - Scalable, efficient
 - Integrated monitoring system
- Concept: In-situ and ex-situ groundwater purification of contaminants without need for frequent sorbent replenishment and disposal

Remediation – Adsorption, Destruction

Raymond Ball, EnChem Engineering, Inc., R44ES028649

- **Combined in-situ / ex-situ** technology to expedite PFAS removal (soil and groundwater)
 - In situ XCT® non-toxic cyclic sugar (CS) flush
 - Ex situ OxyZone® -patented persulfate-based oxidant mixture (alkaline ozonation, 99+ percent removal)
 - Process effective for Ex situ and potentially In situ treatment of PFAS
- Destruction of broad range of PFAS in water including PFOS. Recent results went from 700 ug/kg Total PFAS to 70 ppt for 5 of the 6 UCMR PFAS
- Has worked with Joint Base Cape Cod Superfund Site

Ex-situ treatment reactor can be used as pretreatment to existing Granular Activated Carbon

Other Tools / Research to Support PFAS Remediation

Impact of PFAS on TCE/BTEX Biodegradation

- Lisa Alvarez-Cohen, U California, Berkeley, P42ES004705
- Harding et al., Env Sci Tech, 2016; Yi et al., Env Sci Tech Lett, 2018

Modeling PFAS Fate and Transport

- Mark Brusseau, U Arizona, P42ES004940
- Brusseau et al. Water Res, 2019; Brusseau, Sci Total Environ, 2018

Passive Samplers for PFAS Detection

- Rainer Lohman, U Rhode Island, P42ES027706
- Dixon-Anderson, 2018 Environ Toxicol Chem.

GIS-based database to find towns at high risk for PFAS exposure

- Jen Guelfo (Texas Tech) & Eric Suuberg, Brown U, P42ES013660
- Guelfo et al., EHP, 2018; Guelfo et al., Enviro Poll, 2018

Summary

Established, effective technologies:

- Optimization research underway (PFAST)
- Most mature/feasible technologies are adsorption/separation
- Need for destructive technologies (otherwise just transferring to another media)

New Experimental Approaches

- Optimizing for:
 - Adsorbent affinity
 - Regeneration/Reuse of materials
 - Energy efficiency, natural "green" materials
- Complementary to existing technologies
- Innovative process (treatment train)

Concluding Thoughts

Importance of Cross-disciplinary Coordination: How to prioritize?

- Which compounds are the most common? (Fate and Transport Group)
- Which compounds are the most toxic? (Risk Group)
- Coordination is Key
- Between Grantees and Funding Agencies
 - PFAST, SRP: cross-disciplinary efforts, community engagement
 - SERDP/ESTCP (DOD): coordinating funding programs
- Between States: e.g. Interstate Technology Regulatory Council (<u>https://pfas-1.itrcweb.org/</u>)

National Institute of Environmental Health Sciences Your Environment. Your Health.

Biomedical, Health Risks, Stakeholder Engagement, Transport, Detection and Remediation

Acknowledgements:

SRP Staff and MDB, Inc. Jeffery McDonough, (Arcadis) RTEHC Organizers and Group B – Treatment and Disposal Questions?? Heather Henry, PhD heather.henry@nih.gov 919-609-6061 mobile

Recent/Upcoming PFAS Meetings:

- PFAS Contamination: An Emerging Problem in California (Berkeley, CA) Dec 13, 2019
- National Academy of Science: Identifying Opportunities to Understand, Control, and Prevent Exposure to PFAS (Washington, DC) Sept 23-24 *Video Archive Available
- SETAC: Environmental Risk Assessment of PFAS Compounds (Durham, NC) Aug 12-14, 2019 *Manuscripts under development
- 2019 Per- and Polyfluoroalkyl Substances: Second National Conference (Boston, MA) June 10-12, 2019 *Video Archive Available

For Complete List of Ongoing NIEHS Research: https://www.niehs.nih.gov/research/supported/exposure/pfas/researchers/index.cfm