

Atmospheric Concentrations and Deposition of PFAS

TEAM 4:CO-LEADS: RALPH N. MEAD (UNCW; MEADR@UNCW.EDU)

BARBARA TURPIN (UNCCH; BJTURPIN@EMAIL.UNC.EDU)

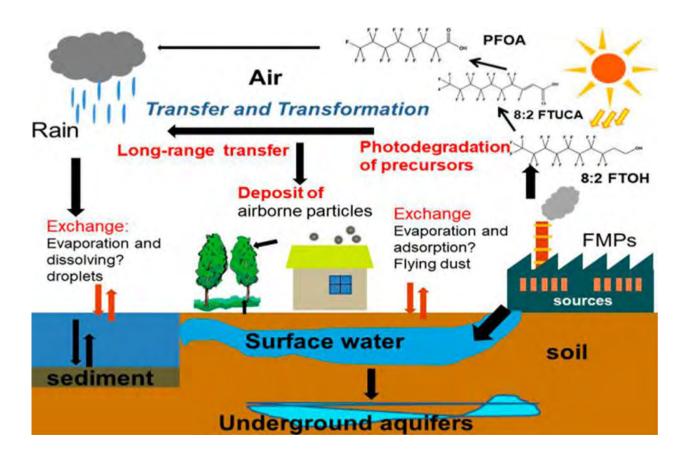
INVESTIGATORS: M. SUN (UNCC); R. KIEBER, G.B AVERY, S. SKRABAL, J. WILLEY (UNCW); J. SURRATT, K. BAUMANN, W. BODNAR, Z. ZHANG (UNCCH)

Motivation

- •Measurements: aerosol concentrations, wet and dry deposition, even far from point sources
- •Human exposure: Airborne PFAS contributes directly (through inhalation) and indirectly (through deposition to watersheds and water supplies)
- •Sources: Production facilities (e.g., Chemours), use of PFAS-containing products (e.g., firefighting foams; household products), waste streams (e.g., contaminated soil, wastewater, landfills)
- Atmospheric PFAS Transformations: Limited knowledge regarding PFAS atmospheric reactions and drinking water impacts
- •Elevated concentrations: indoors, near industrial sources, in urban areas

Fate and effects of atmospheric PFAS are poorly understood: they depend on PFAS chemistry and properties

Research Questions


What PFAS compounds are present in ambient NC air? in wet/dry deposition?

What is the geographic distribution and what does this tell us about sources?

What is the contribution of wet/dry deposition to the Cape Fear watershed?

How does gas-to-particle conversion (multiphase atmospheric chemistry) during air mass transfer alter the fate of certain PFAS species?

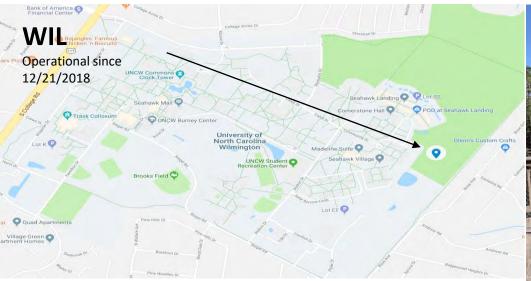
Planned Approach

- 1. Event-based wet/dry deposition sampling: in Wilmington and selected other stations
- 2. Integrated gas and particle sampling: Weekly 6 day periods for one year. Wilmington, RTP, Charlotte, Greenville, Fayetteville
- Real-time measurement of highly polar gases: 1-2 weeks (exact mass chemical ionization mass spectrometry)
- **4. Chemical analysis:** Isolation and analysis by UPLC-ESI-HR-QTOF-MS. UPLC-ESI-QqQ-MS
- 5. Calculate: deposition to Cape Fear watershed
- 6. Examine: influence of back trajectory, geography, season, sources
- 7. Laboratory experiments: of multiphase chemistry of hexafluoropropylene oxide (HFPO)

Sample Stations

Example Aerosol Station

NC Department of Environmental Quality
Division of Air Quality
Thanks to
Joette Steger & Mitchell Revels
Fayetteville Regional Office
Site Address
John Griffin Middle School
8943 Fisher Road
Fayetteville, NC 28304



Example Aerosol and Wet/Dry Deposition Station

UNIVERSITY of NORTH CAROLINA WILMINGTON

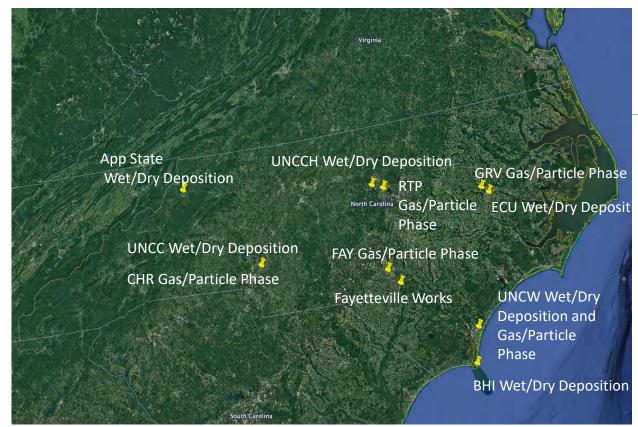
Department of Chemistry & Biochemistry

Drs. Kieber & Skrabal Center for Marine Science 5600 Marvin Moss Lane **Wilmington**, NC 28409-5928

Sample Collection and Analysis

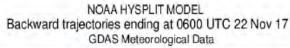
Wet/Dry Deposition Collector

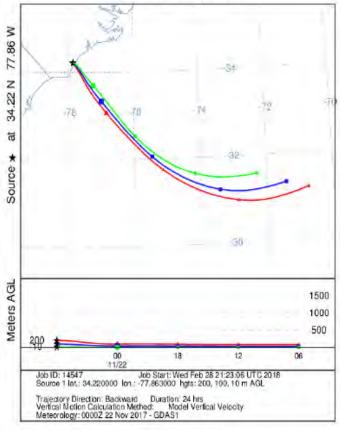
Extraction



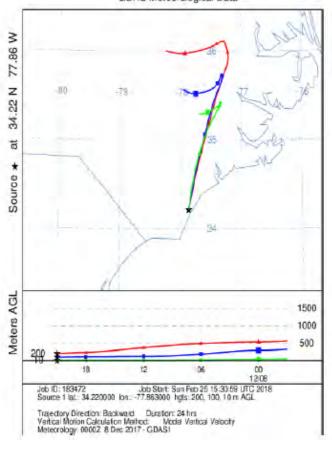
Analysis by mass spectrometry to identify compounds and report concentrations

Gas/Particle Phase Collector


Timeline of Sampling



	Dec 18 - Mar 19	April 19 - May 19	May 19 – Sept 19	Oct 19 – Dec 19
Collect wet/dry deposition at Wilmington site	XXXX	XXXX	XXXX	XXXX
Collect wet/dry deposition at other locations	3 collections		3 collections	
Gas/Particle phase collection	XXXX	XXXX	XXXX	XXXX
Airborne gas/particle collection real time			XXXX	


Example of Data: Air Mass Back Trajectory and GenX Rainwater PFAS Concentration

E 1775
11/21-22/17
GenX <3 ppt (ng/L)
0.26 inches at UNCW
pH not analyzed

NOAA HYSPLIT MODEL
Backward trajectories ending at 2100 UTC 08 Dec 17
GDAS Meteorological Data

E 1781 12/8-9/17 **GenX >500 ppt (ng/L)** 1.8 inches at UNCW pH4.68

Outcomes

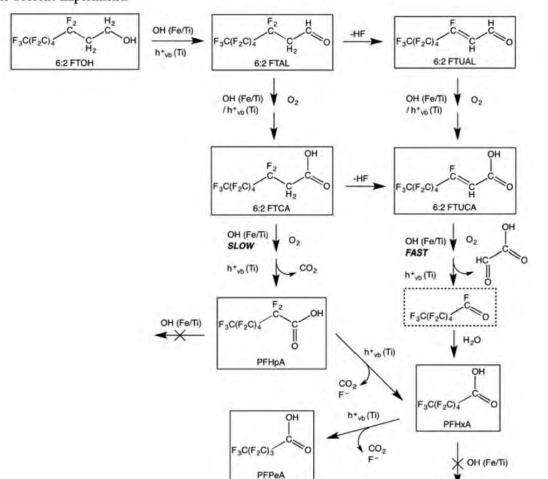
- The proposed research will provide critical and transformative information regarding the atmospheric reactions, transport and deposition of PFAS to surface and ground waters that feed drinking water supplies.
- There is limited to no information on the atmospheric reactions these PFAS compounds undergo during long range transport influencing deposition.
- Ultimately, the knowledge gained from this research will benefit stakeholders within NC and beyond.
- Results will be presented in peer reviewed publications and shared with local, state and federal agencies

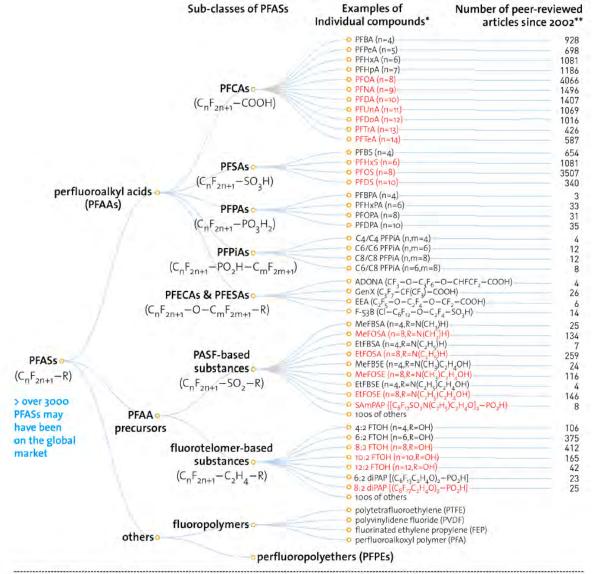
Acknowledgements

 Research funded by the North Carolina Policy Collaboratory through an appropriation from the North Carolina General Assembly

NC DEQ and especially DAQ for access to FAY station

Questions?

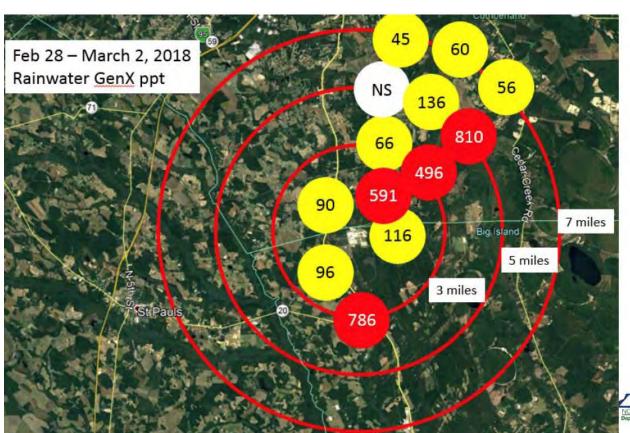



Extra Slides

PFAS Atmospheric Transformations on Surfaces

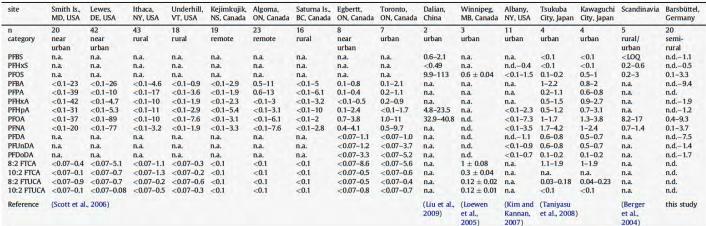
Scheme 1. Suggested Mechanisms for Photoproduction of PFAS from Surface-Sorbed FTOHs. Species in Solid Rectald Observed in the Present Experiments

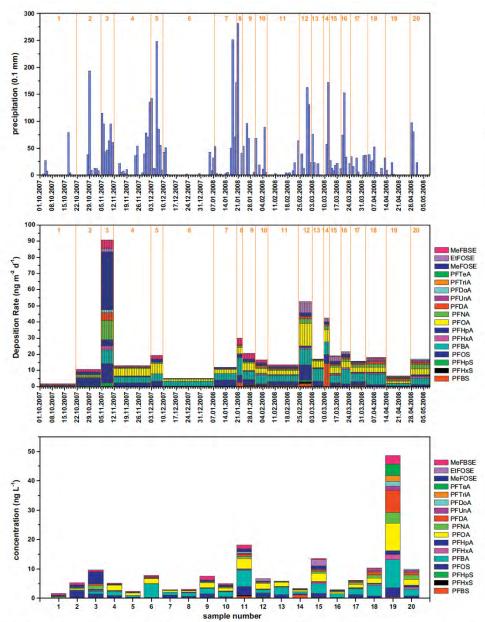
PFASs in RED are those that have been restricted under national/regional/global regulatory or voluntary frameworks, with or without specific exemptions (for details, see OECD (2015), Risk reduction approaches for PFASs. http://oe.cd/iAN).
 ** The numbers of articles (related to all aspects of research) were retrieved from SciFinder® on Nov. 1, 2016.


Figure 1. "Family tree" of PFASs, including examples of individual PFASs and the number of peer-reviewed articles on them since 2002 (most of the studies focused on long-chain PFCAs, PFSAs and their major precursors.).

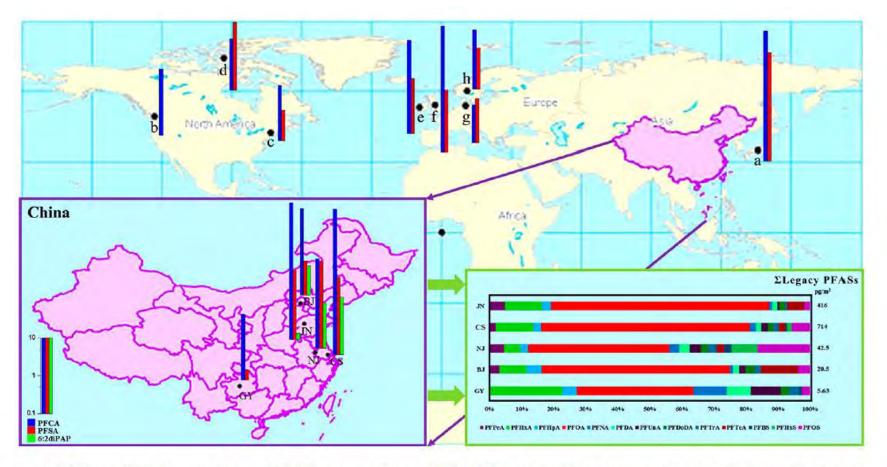
Several of these PFAS sub-classes have been detected in atmospheric samples. Do members of these classes decompose in the atmosphere or undergo other transformations? Do these compound(s) impact drinking water through wet/dry deposition?

Wet/Dry Deposition of GenX near Fayetteville Works Facility




Wet deposition of poly- and perfluorinated compounds in Northern Germany

Rainwater PFAS Concentration in Literature



Atmospheric Particulate Organic Matter (APM)

Figure 3. Distribution of PFCAs, PFSAs, and 6:2 diPAP in outdoor APM (data for China were obtained from this study, and those for other countries were obtained from previous studies; a: Japan, ⁷⁶ b: Canada, ²⁹ c: U.S., ⁷⁷ d: Arctic, ⁷⁸ e: UK, ⁴² f: Ireland, ⁴² g: Germany, ⁷⁹ h: Norway ⁴²) and proportional distribution of legacy PFASs in outdoor APM (value of legacy PFASs is arithmetic mean).

PFAS in House Hold Dust

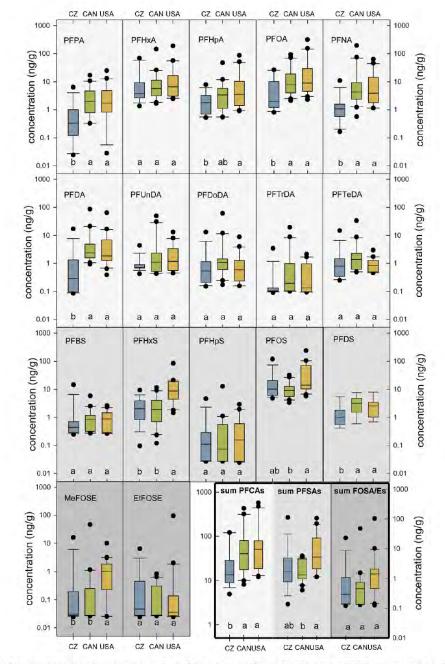


Fig. 1. Box and whisker plots of concentration (ng/g) showing the distribution of PFASs in dust samples from Czech Republic, Canada and USA. The lower and upper ends of the box are the 25th and 75th percentiles of data. The horizontal line within the box is the median value. The whiskers define the 5th and 95th percentiles and symbol ● illustrates outliers. Boxes that share the same letter are not significantly different at a 5% level in ANOVA analysis using Tukey's test.

Multiphase Environmental Concentrations PFAS

TABLE 1. Concentration (Range, Median, and Average; pg/m³ or ng/L) of Perfluorinated Carboxylates (PFCAs), Perfluorinated Alkylsulfonates (PFAS), and Fluorotelomer Sulfonates (FtS) in Various Environmental Media in Urban Area (Albany, New York)

	sampling date	site	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFHxS	PFOS	PFDS	PFOSA	6:2 FtS*	8:2 FtS ^b	ΣPFAs ^c
air (gas)	May, Jul/06	L2 $(n = 8)$	0.13-0.42 (0.23, 0.26)	1.89-6.53 (2.86, 3.16)	0.16-0.31 (0.20, 0.21)	0.24-1.56 (0.56, 0.63)	ND-0.16 (<loq)< td=""><td>0.14-0.43 (0.27, 0.27)</td><td>0.13-0.44 (0.34, 0.31)</td><td>0.94-3.0 (1.42, 1.70)</td><td>ND</td><td>0.22-2.2 6 (0.47, 0.67)</td><td>ND-<loq (<loq)< td=""><td>ND-<loq (<loq)< td=""><td>5.10-11.6 (6.26, 7.29)</td></loq)<></loq </td></loq)<></loq </td></loq)<>	0.14-0.43 (0.27, 0.27)	0.13-0.44 (0.34, 0.31)	0.94-3.0 (1.42, 1.70)	ND	0.22-2.2 6 (0.47, 0.67)	ND- <loq (<loq)< td=""><td>ND-<loq (<loq)< td=""><td>5.10-11.6 (6.26, 7.29)</td></loq)<></loq </td></loq)<></loq 	ND- <loq (<loq)< td=""><td>5.10-11.6 (6.26, 7.29)</td></loq)<></loq 	5.10-11.6 (6.26, 7.29)
air						Kara and		7 4 4 4	Maren W. STEAM			W. T. S. S. V.			7.5
	May, Jul/06	L2 (n = 8)	<loq-0.81< td=""><td>0.76-4.19</td><td><loq-0.40< td=""><td>0.13-0.49</td><td>ND</td><td><loq-0.38< td=""><td><loq< td=""><td>0.35-1.16</td><td><loq-0.18< td=""><td><loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<></td></loq-0.18<></td></loq<></td></loq-0.38<></td></loq-0.40<></td></loq-0.81<>	0.76-4.19	<loq-0.40< td=""><td>0.13-0.49</td><td>ND</td><td><loq-0.38< td=""><td><loq< td=""><td>0.35-1.16</td><td><loq-0.18< td=""><td><loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<></td></loq-0.18<></td></loq<></td></loq-0.38<></td></loq-0.40<>	0.13-0.49	ND	<loq-0.38< td=""><td><loq< td=""><td>0.35-1.16</td><td><loq-0.18< td=""><td><loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<></td></loq-0.18<></td></loq<></td></loq-0.38<>	<loq< td=""><td>0.35-1.16</td><td><loq-0.18< td=""><td><loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<></td></loq-0.18<></td></loq<>	0.35-1.16	<loq-0.18< td=""><td><loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<></td></loq-0.18<>	<loq-0.79< td=""><td>ND-<loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<></td></loq-0.79<>	ND- <loq< td=""><td>ND-<loq< td=""><td>2.05-6.04</td></loq<></td></loq<>	ND- <loq< td=""><td>2.05-6.04</td></loq<>	2.05-6.04
			(0.29, 0.37)	(1.57, 2.03)	(<loq, 0.13)<="" td=""><td>(0.22, 0.27)</td><td></td><td>(<loq, 0.12)<="" td=""><td></td><td>(0.66, 0.64)</td><td>(<loq)< td=""><td>(0.23, 0.29)</td><td>(<loq)< td=""><td>(<loq)< td=""><td>(3.96, 4.03)</td></loq)<></td></loq)<></td></loq)<></td></loq,></td></loq,>	(0.22, 0.27)		(<loq, 0.12)<="" td=""><td></td><td>(0.66, 0.64)</td><td>(<loq)< td=""><td>(0.23, 0.29)</td><td>(<loq)< td=""><td>(<loq)< td=""><td>(3.96, 4.03)</td></loq)<></td></loq)<></td></loq)<></td></loq,>		(0.66, 0.64)	(<loq)< td=""><td>(0.23, 0.29)</td><td>(<loq)< td=""><td>(<loq)< td=""><td>(3.96, 4.03)</td></loq)<></td></loq)<></td></loq)<>	(0.23, 0.29)	(<loq)< td=""><td>(<loq)< td=""><td>(3.96, 4.03)</td></loq)<></td></loq)<>	(<loq)< td=""><td>(3.96, 4.03)</td></loq)<>	(3.96, 4.03)
lake water	Feb-Nov/06	L2 & 3 (n = 11)	1.15-12.7	3.27-15.8	ND-3.51	0.25-3.58	ND-1.45	ND- <loq< td=""><td><loq-4.05< td=""><td>The second secon</td><td>ND-0.34</td><td>ND-0.47</td><td>ND-1.46</td><td></td><td>9.49-35.9</td></loq-4.05<></td></loq<>	<loq-4.05< td=""><td>The second secon</td><td>ND-0.34</td><td>ND-0.47</td><td>ND-1.46</td><td></td><td>9.49-35.9</td></loq-4.05<>	The second secon	ND-0.34	ND-0.47	ND-1.46		9.49-35.9
			(4.09, 4.77)	(7.20, 8.61)	(1.63, 1.70)	(1.38, 1.64)	(<loq)< td=""><td></td><td>(0.53, 1.58)</td><td>(2.88, 4.14)</td><td>(<loq)< td=""><td>(<loq,)< td=""><td>(<loq, 0.35)<="" td=""><td>) (<loq)< td=""><td>(21.1, 21.8)</td></loq)<></td></loq,></td></loq,)<></td></loq)<></td></loq)<>		(0.53, 1.58)	(2.88, 4.14)	(<loq)< td=""><td>(<loq,)< td=""><td>(<loq, 0.35)<="" td=""><td>) (<loq)< td=""><td>(21.1, 21.8)</td></loq)<></td></loq,></td></loq,)<></td></loq)<>	(<loq,)< td=""><td>(<loq, 0.35)<="" td=""><td>) (<loq)< td=""><td>(21.1, 21.8)</td></loq)<></td></loq,></td></loq,)<>	(<loq, 0.35)<="" td=""><td>) (<loq)< td=""><td>(21.1, 21.8)</td></loq)<></td></loq,>) (<loq)< td=""><td>(21.1, 21.8)</td></loq)<>	(21.1, 21.8)
	Aug/06-														
rain water	Mar/07	L1&2&3 (n = 11)	<loq-2.32< td=""><td><loq-7.27< td=""><td><loq-3.48< td=""><td>ND-1.14</td><td><loq-0.86< td=""><td><loq-0.71< td=""><td>ND-0.36</td><td><loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<></td></loq-0.71<></td></loq-0.86<></td></loq-3.48<></td></loq-7.27<></td></loq-2.32<>	<loq-7.27< td=""><td><loq-3.48< td=""><td>ND-1.14</td><td><loq-0.86< td=""><td><loq-0.71< td=""><td>ND-0.36</td><td><loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<></td></loq-0.71<></td></loq-0.86<></td></loq-3.48<></td></loq-7.27<>	<loq-3.48< td=""><td>ND-1.14</td><td><loq-0.86< td=""><td><loq-0.71< td=""><td>ND-0.36</td><td><loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<></td></loq-0.71<></td></loq-0.86<></td></loq-3.48<>	ND-1.14	<loq-0.86< td=""><td><loq-0.71< td=""><td>ND-0.36</td><td><loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<></td></loq-0.71<></td></loq-0.86<>	<loq-0.71< td=""><td>ND-0.36</td><td><loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<></td></loq-0.71<>	ND-0.36	<loq-1.51< td=""><td>ND-0 0.41</td><td>ND-<loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<></td></loq-1.51<>	ND-0 0.41	ND- <loq< td=""><td>ND-0.41</td><td><loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<></td></loq<>	ND-0.41	<loq-3.19< td=""><td>0.91-13.2</td></loq-3.19<>	0.91-13.2
			(0.56, 0.69)	(2.15, 2.53)	(1.04, 1.27)	(<loq, 0.41)<="" td=""><td>(0.41, 0.44)</td><td>(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.36)<="" td=""><td>(<loq)< td=""><td></td><td>(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<></td></loq)<></td></loq,></td></loq)<></td></loq)<></td></loq,>	(0.41, 0.44)	(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.36)<="" td=""><td>(<loq)< td=""><td></td><td>(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<></td></loq)<></td></loq,></td></loq)<></td></loq)<>	(<loq)< td=""><td>(<loq, 0.36)<="" td=""><td>(<loq)< td=""><td></td><td>(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<></td></loq)<></td></loq,></td></loq)<>	(<loq, 0.36)<="" td=""><td>(<loq)< td=""><td></td><td>(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<></td></loq)<></td></loq,>	(<loq)< td=""><td></td><td>(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<></td></loq)<>		(<loq)< td=""><td>(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,></td></loq)<>	(<loq, 0.56)<="" td=""><td>(6.60, 6.19)</td></loq,>	(6.60, 6.19)
	Feb/06,														
snow	Jan-Mar/07	L1&2&3 (n = 21)	<loq-1.61< td=""><td><loq-19.6< td=""><td><loq-4.94< td=""><td>ND-1.37</td><td>ND-1.08</td><td>ND-0.41</td><td>ND-0.35</td><td><loq-1.93< td=""><td>ND-<loq< td=""><td>ND-0.57</td><td>ND-0.34</td><td>ND-3.37</td><td>0.91-23.9</td></loq<></td></loq-1.93<></td></loq-4.94<></td></loq-19.6<></td></loq-1.61<>	<loq-19.6< td=""><td><loq-4.94< td=""><td>ND-1.37</td><td>ND-1.08</td><td>ND-0.41</td><td>ND-0.35</td><td><loq-1.93< td=""><td>ND-<loq< td=""><td>ND-0.57</td><td>ND-0.34</td><td>ND-3.37</td><td>0.91-23.9</td></loq<></td></loq-1.93<></td></loq-4.94<></td></loq-19.6<>	<loq-4.94< td=""><td>ND-1.37</td><td>ND-1.08</td><td>ND-0.41</td><td>ND-0.35</td><td><loq-1.93< td=""><td>ND-<loq< td=""><td>ND-0.57</td><td>ND-0.34</td><td>ND-3.37</td><td>0.91-23.9</td></loq<></td></loq-1.93<></td></loq-4.94<>	ND-1.37	ND-1.08	ND-0.41	ND-0.35	<loq-1.93< td=""><td>ND-<loq< td=""><td>ND-0.57</td><td>ND-0.34</td><td>ND-3.37</td><td>0.91-23.9</td></loq<></td></loq-1.93<>	ND- <loq< td=""><td>ND-0.57</td><td>ND-0.34</td><td>ND-3.37</td><td>0.91-23.9</td></loq<>	ND-0.57	ND-0.34	ND-3.37	0.91-23.9
			(0.39, 0.45)	(2.72, 4.89)	(0.55, 0.91)	(0.32, 0.45)	(<loq, 0.30)<="" td=""><td>(<loq)< td=""><td>(<loq)< td=""><td>(0.52, 0.62)</td><td></td><td>(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,></td></loq)<></td></loq)<></td></loq)<></td></loq)<></td></loq,>	(<loq)< td=""><td>(<loq)< td=""><td>(0.52, 0.62)</td><td></td><td>(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,></td></loq)<></td></loq)<></td></loq)<></td></loq)<>	(<loq)< td=""><td>(0.52, 0.62)</td><td></td><td>(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,></td></loq)<></td></loq)<></td></loq)<>	(0.52, 0.62)		(<loq)< td=""><td>(<loq)< td=""><td>(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,></td></loq)<></td></loq)<>	(<loq)< td=""><td>(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,></td></loq)<>	(<loq, 0.44)<="" td=""><td>(5.54, 7.98)</td></loq,>	(5.54, 7.98)
SRWs	Jan-Mar/07	all P&R $(n = 14)$	<loq-6.44< td=""><td>0.51-29.3</td><td><loq-5.90< td=""><td>ND-8.39</td><td>ND-1.99</td><td>ND-1.60</td><td>ND-13.5</td><td><loq-14.6< td=""><td>ND</td><td>ND-2.14</td><td><loq-21.3< td=""><td><loq-5.84< td=""><td>1.11-81.8</td></loq-5.84<></td></loq-21.3<></td></loq-14.6<></td></loq-5.90<></td></loq-6.44<>	0.51-29.3	<loq-5.90< td=""><td>ND-8.39</td><td>ND-1.99</td><td>ND-1.60</td><td>ND-13.5</td><td><loq-14.6< td=""><td>ND</td><td>ND-2.14</td><td><loq-21.3< td=""><td><loq-5.84< td=""><td>1.11-81.8</td></loq-5.84<></td></loq-21.3<></td></loq-14.6<></td></loq-5.90<>	ND-8.39	ND-1.99	ND-1.60	ND-13.5	<loq-14.6< td=""><td>ND</td><td>ND-2.14</td><td><loq-21.3< td=""><td><loq-5.84< td=""><td>1.11-81.8</td></loq-5.84<></td></loq-21.3<></td></loq-14.6<>	ND	ND-2.14	<loq-21.3< td=""><td><loq-5.84< td=""><td>1.11-81.8</td></loq-5.84<></td></loq-21.3<>	<loq-5.84< td=""><td>1.11-81.8</td></loq-5.84<>	1.11-81.8
					(0.71, 1.30)	(0.46, 1.15)	(<loq)< td=""><td>(<loq, 0.30)<="" td=""><td></td><td></td><td></td><td>(<loq, 0.33)<="" td=""><td></td><td>(<loq, 1.09)<="" td=""><td></td></loq,></td></loq,></td></loq,></td></loq)<>	(<loq, 0.30)<="" td=""><td></td><td></td><td></td><td>(<loq, 0.33)<="" td=""><td></td><td>(<loq, 1.09)<="" td=""><td></td></loq,></td></loq,></td></loq,>				(<loq, 0.33)<="" td=""><td></td><td>(<loq, 1.09)<="" td=""><td></td></loq,></td></loq,>		(<loq, 1.09)<="" td=""><td></td></loq,>	
9 -	A series of the							, h-	A COUNTY	0.00	A LINE WAY		A CHAPTER IN		1

^a The number analyzed (n = 11 for lake water, n = 10 for rainwater, and n = 15 for snow). ^b The number analyzed (n = 2 for lake water, n = 7 for rainwater, and n = 12 for snow). ^c The sum of PFCAs and PFAS except for two FtS. The values in parentheses indicate "median" and "arithmetic mean" and LOQ was 0.25–0.75 ng/L for PFOA and 0.25 ng/L for others in aqueous samples. For air samples, LOQ was 0.12 pg/m³ for all gaseous and particulate compounds except for particulate PFOA (0.195 pg/m³) and PFOS (0.07 pg/m³).

Landfill Atmospheric Emissions

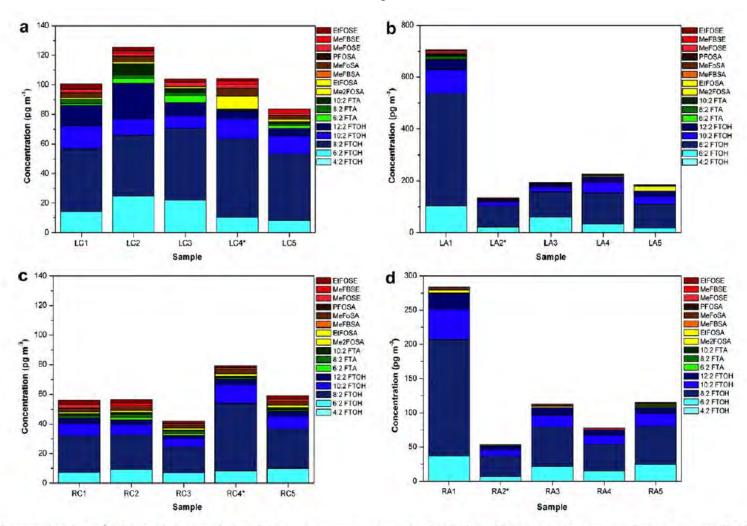


Fig. 1. Concentrations (pg m⁻³) of semi-volatile and volatile PFCs in gas-phase samples taken at landfills (LC (a) and LA (b)) and at the corresponding reference sites (RC(c) and RA (d)). Sampling periods: 11.08.–18.08.2009 (LC) and 27.08.–02.09.2009 (LA). Note the different scales. Asterisks mark the 3-day samples.

Landfill Emissions Impacts Atmospheric Concentrations of Neutral and Ionizable PFAS in China

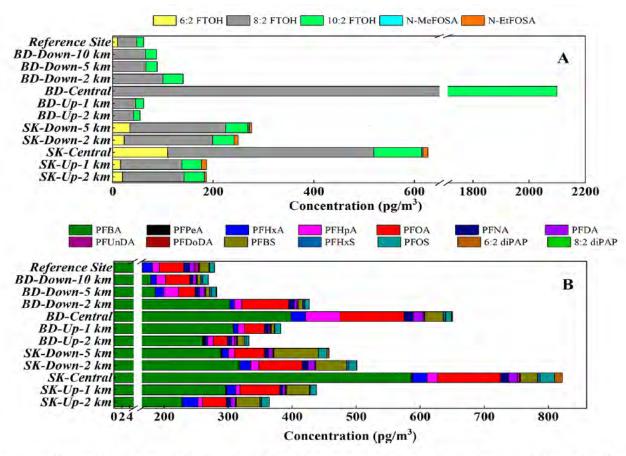


Figure 1. Concentrations and spatial distributions of neutral and ionizable PFASs in the air around two landfills (SK and BD) and the suburban reference site (IN) in Tianjin, China. SK-Central and BD-Central represents the central area of the two landfills, SK-Up and BD-Up represent upwind sites, SK-Down and BD-Down represent downwind sites. (A) neutral PFASs; (B) ionizable PFASs ($C \ge 4$).

2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propanoic acid CAS # 13252-13-6

$$F \xrightarrow{O} F$$
 $F \xrightarrow{F} F$

Hexafluoropropylene oxide (HFPO) CAS # 428-59-1

Example Research: Removal of Atmospheric Ethanol by Wet Deposition

- Wet deposition is estimated to remove 6%-16% of ethanol emitted to the atmosphere annually. The large range indicates uncertainty in global models with limited wet deposition concentrations
- Global wet deposition flux of ethanol from storms with terrestrial derived back trajectory 1.99 Tg/year and marine derived back trajectory 0.44 Tg/year Total flux: 2.43 Tg/year