

What can we do to remove PFAS from our drinking water sources?

TEAM 3: PFAS REMOVAL PERFORMANCE TESTING PRESENTER: *MEI SUN, ORLANDO CORONELL, DETLEF KNAPPE, FRANK LEIBFARTH, HEATHER STAPLETON*

NC PFAS Testing (PFAST) Network, a research program funded by the NC Policy Collaboratory

Research Questions

• What is the best option to remove PFAS from drinking water among commercially available activated carbons (AC), ion exchange (IX) resins, and membrane filters?

- What do we do with the waste streams with enriched PFAS, generated during resin regeneration and membrane filtration?
- Are there promising novel PFAS removal methods we can develop?
- How successful are the household filters in removing PFAS from tap water?

Research needs

 NC Senate Bill 99 mandates "test the performance of relevant technologies in removing such compounds"

• AC, IX resins, and membranes have been shown effective in removing certain legacy PFAS, but there is limited information on emerging PFAS such as GenX

• A wide variety of AC, IX resins and membranes are commercially available, but utilities lack information for their rational selection to achieve desired PFAS removal

• AC, IX resins and membranes are all separation technologies that produce wastes with high PFAS levels, so further treatments are needed for properly waste handling

• Other innovative treatment options may provide more attractive results

• Residents are eager to know what household filters they should buy to protect their family from PFAS

Planned Approach

Evaluate 10 commercially available AC, IX resins and membranes for PFAS removal from groundwater

Optimize commercial membrane chemistries

Challenge the top 3 candidates with PFAScontaminated surface water Synthesize Ionic Fluorogels using perfluoropolyethers for selective PFAS uptake

Evaluate the top 3 candidates for PFAS removal at different pH

Test novel techniques using the same water matrices as existing ones

Planned Approach (cont'd)

Evaluate electrochemical processes for treating PFAS waste streams

Survey water samples before and after treatment by household filters in 100 houses

Use targeted and nontargeted LC-MS/MS and adsorbable organic fluorine analysis to quantify PFAS

All technologies will be compared based on performance and cost to optimize decisions